机器学习中的数学修炼在线阅读
会员

机器学习中的数学修炼

左飞编著
开会员,本书免费读 >

计算机网络人工智能22.2万字

更新时间:2023-09-26 15:48:09 最新章节:参考文献

立即阅读
加书架
下载
听书

书籍简介

全书共分为两篇:在上篇中,将从浩瀚的数学海洋中撷取机器学习研究人员最为必须和重要的数学基础。内容主要包括:微积分(含场论)、数值计算和常用最优化方法、概率论基础与数理统计、线性代数等。在下篇中,将选取机器学习中最为常用的算法和模型进行讲解,这部分内容将涉及(广义)线性回归、图模型(包含贝叶斯网络和HMM等)、分类算法(包括SVM,逻辑回归,神经网络等)和聚类算法(包括K均值和EM算法等)等话题。
品牌:清华大学
上架时间:2020-07-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

左飞编著
主页

最新上架

  • 会员
    本书分为23章,从基础的演讲知识入手,到演讲稿的写作技巧,再到指导读者如何有效地利用ChatGPT进行演讲稿写作和演讲练习,最后通过实际的行业案例进行深入的学习和实战应用。使读者不仅可以学习演讲的相关知识,还能对如何利用ChatGPT进行有效的演讲有所理解。
    刘萌雪 赵建涛 屈高翔计算机19.1万字
  • 会员
    本书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。全书通过共计13章的系统内容,探讨AI技术在架构设计中的应用,以及AI对传统架构师工作方式的影响,读者可以了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。
    关东升计算机7字
  • 会员
    本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专
    肖睿 程鸣萱编著计算机11万字
  • 会员
    本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。
    王士国 翟宇 虞振飞 方良华计算机17.5万字
  • 会员
    DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合
    未来智能实验室 代晶编著计算机17.1万字
  • 会员
    本书共16章,内容包括人工智能、OpenAI、ChatGPT的概述及其操作技巧。生动展示了ChatGPT在教育与学术、商业管理、新媒体、办公、求职等12个领域的实际运用,同时探讨了ChatGPT当前面临的挑战以及大模型的未来发展方向。
    江涵丰计算机12万字
  • 会员
    本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型
    文亮 江维计算机12.2万字
  • 会员
    本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、
    唐宇迪 史卫亚 罗召勇 李琳 侯惠芳编著计算机0字
  • 会员
    本书是关于如何从零开始构建大模型的指南,由畅销书作家塞巴斯蒂安·拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者创建自己的大模型。在本书中,读者将学习如何规划和编写大模型的各个组成部分、为大模型训练准备适当的数据集、进行通用语料库的预训练,以及定制特定任务的微调。此外,本书还将探讨如何利用人工反馈确保大模型遵循指令,以及如何将预训练权重加载到大模型中。
    (美)塞巴斯蒂安·拉施卡计算机13.8万字